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A fluid contained between two parallel walls, one of which is at rest and the other 
moving in the longitudinal direction with a constant velocity, is examined when a 
standing sound wave is imposed in the transverse direction. Vortical acoustic streaming 
appears in the region between the walls. The streaming is not affected by the main flow. 
A qualitative analysis is presented for the Navier-Stokes equations governing the 
steady-streaming component of the motion. The study considers the case of flow with 
high streaming Reynolds number and makes an explicit determination of the vorticity 
in the inviscid core region. The effect of the streaming upon the shear flow in the 
longitudinal direction is then analysed asymptotically. A periodic structure of the wall 
shear stress in the transverse direction is detected in which vast areas of vanishing wall 
shear stress alternate with narrow regions where it increases significantly. A relation 
expressing the mean wall shear stress in terms of the streaming Reynolds number is 
derived. Results obtained show that acoustic streaming results in a marked 
enhancement of the mean wall shear stress at the walls. 

1. Introduction 
The interaction between sound waves and viscosity leads to the formation of 

secondary vortex flow. This acoustic streaming occurs when an acoustic standing wave 
is present in fluid adjacent to a solid wall or it results from the vibrations of a solid body 
adjacent to fluid at rest. 

Acoustic streaming in a uniform duct was first analysed by Lord Rayleigh (1883). 
This work has been continued by Westervelt (1953), Nyborg (1953), and Schlichting 
(1955). The treatment ignored the effect of the fluid inertia on the streaming motions. 
Lighthill (1978) has emphasized the fundamental principle that it is the attenuation of 
acoustic energy flux that makes momentum flux available to force the streaming 
motion. 

The flow is characterized by a streaming Reynolds number R, based upon the time- 
independent component of the fluid velocity and a linear dimension of the acoustic 
boundary layer. Stuart (1966), in the context of the flow induced by a vibrating 
cylinder, first recognized the importance of this parameter and predicted that a jet-like 
streaming flow, along the axis of oscillations, would originate at the cylinder. Davidson 
& Riley (1972) did. a flow visualization of this jet from which it was possible to make 
quantitative measurements of the jet flow. Bertelsen (1974) has presented an 
experimental investigation of high-Reynolds-number steady streaming for an osc- 
illating circular cylinder in a finite domain with a boundary which is cylindrical in 
shape. Duck & Smith (1979) have considered the flow of a fluid between two cylinders, 
when the inner cylinder performs small harmonic oscillations. The asymptotic solution 
consists of an inviscid core region, which has closed streamlines with constant vorticity 
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(Batchelor 1956) and a closed boundary layer. Kim & Troesch (1989) were able to 
solve, using a finite-difference method, the problem of the streaming flow between two 
concentric cylinders where the inner square cylinder performs harmonic oscillations 
and the outer circular cylinder is at rest. Tatsuno & Bearman (1990) have 
experimentally investigated flow structures over a wide range of parameters and 
identified the different flow regimes, whilst Stansby & Smith (1991) investigated 
numerically the viscous forces on a circular cylinder in orbital flow for small values of 
amplitude and low frequency. Streaming induced by a sphere, due to a pulsating 
source, was considered by Wang (1982) for R, 4 1, and by Amin & Riley (1990) for 
R, % 1. Secondary streaming in a narrow cell caused by a vibrating wall, when the 
dimension of the container is smaller than the sonic wavelength, was studied by 
Vainshtein, Fichman & Pnueli (1994). 

The problem of heat transfer associated with acoustic streaming induced by an 
oscillating circular cylinder has been studied by Richardson (1967) and Davidson 
(1973). Heat transfer due to acoustic streaming from a sphere has been treated by 
Gopinath & Mills (1993), and across the ends of a Kundt tube by Gopinath & Mills 
(1994). The problem of the influence of Rayleigh’s acoustic streaming on heat transfer 
between two parallel plates which are kept at different temperatures has been analysed 
by Gutfinger, Vainshtein & Fichman (1994), and by Vainshtein, Fichman & Gutfinger 
(1995). The case R, 4 1, R, Pr % 1 was considered and the enhancement of heat 
transfer by sound waves revealed. 

Secomb (1978) has examined the flow in a channel with pulsating walls. The study 
covers all values of the streaming Reynolds number, and gives us an example 
inviscid rotational streaming in a confined flow. The internal acoustic flow in a 
waveguide with a slowly varying height was analysed by Thompson (1984). The 
oscillatory flow in a tube of slowly varying cross-section was considered by Hall (1974), 
who prescribes an oscillating pressure difference of constant amplitude. The oscillatory 
viscous flow in a tapered channel under conditions of fixed stroke volume was analysed 
by Grotberg (1984). The flow in a pipe of circular cross-section which is coiled in a 
circle has been studied by Lyne (1970) who analysed the secondary streaming generated 
by centrifugal effects in the limit R,+ 00. It is found that in corners adjacent to 
stagnation points the flow is irrotational in character, and the perturbation vorticity is 
convected around the corner on the streamlines of the motion. The analysis follows 
closely that of Harper (1963), dealing with the wake behind a bluff body in a uniform 
stream, and Moore (1963), concerning the boundary layer on a spherical gas bubble. 

For many-body problems Ingham, Tang & Morton (1990) have examined both 
numerically and experimentally the steady two-dimensional flow through a cascade of 
normal flat plates, whilst Yan, Ingham & Morton (1993) considered a cascade of 
circular cylinders which oscillate harmonically in an unbounded viscous fluid. 

Traditional studies of acoustic shear flow interaction by Pridmore-Brown (1958), 
Mungur & Gladwell (1969), and Hersh & Catton (1971) examined the quasi-steady 
properties of sound waves propagating in fully developed shear flows above a flat 
surface or in a planar duct in the longitudinal direction. Solutions predict significant 
distortion of propagating wave modes as a result of acoustic refraction. Baum & 
Levine (1987) used numerical methods to solve an initial boundary-value problem 
based on the Reynolds-averaged Navier-Stokes equations in order to reveal 
mechanisms for energy exchange between the acoustic and mean flow fields. Acoustic 
shear flow interactions in a rectangular duct were studied by Wang & Kassoy (1992), 
using the idealized model as a paradigm to demonstrate the complex response of an 
initially steady flow to an imposed longitudinal velocity disturbance. 
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It is worth emphasizing that the works cited in the previous paragraph deal with the 
streamwise effect of a sonic wave on a main shear flow. We should note the paper by 
Jung, Mangiavacchi & Akhavan (1992) in which the response of wall-flow turbulence 
to high-frequency spanwise oscillations was investigated by direct numerical 
simulations of a planar channel flow subjected either to an oscillatory spanwise cross- 
flow or to the spanwise oscillatory motion of a channel wall. The results show that 
under certain conditions the turbulent bursting process was suppressed, leading to 
sustained reductions in the turbulent drag. 

The present work considers simple shear flow between two parallel walls affected by 
a plane standing wave, imposed in the spanwise transverse direction. The interaction 
between the sound wave and the walls results in the appearance of secondary streaming 
periodic in that direction. Our main concern is with the case R,  b 1, where 

3wi h2w 
32vc2 * 

R, = ~ 

In (1.1) wo is a characteristic amplitude of oscillations, w is a typical frequency, c is the 
speed of sound, v is the kinematic viscosity, and h is the distance between the walls. The 
study is aimed at analysing the effect of this Rayleigh-type streaming on the wall shear 
stress distribution. However, the most important result is the determination of the 
secondary streaming itself at large values of R,. 

2. Formulation of the problem 
One example of a viscous flow is discussed in this paper: the case in which an 

external plane standing sound wave is imposed in the transverse direction with respect 
to the main flow. Let the fluid be enclosed between two parallel walls, one of which, 
the (x’, z’)-plane, is at rest, while the other is moving in its plane in the longitudinal x’- 
direction with a constant velocity, U(figure 1). Such a formulation of the problem leads 
to a solution describing simple Couette flow. We assume that the velocity of the moving 
wall, U, is much smaller than that of sound, 

U/C< 1 .  (2- 1) 

This condition enables us to neglect the compressibility of the main flow. Let a plane 
standing wave be imposed in the z’-direction: 

W =  w,cosnz‘coswt‘, 
n = w/c, 

-co < x‘ < co, 
0 c y’ c h, 

where W(z’, t’) is the external-flow velocity, t’ is time, and y’ is the normal coordinate. 
In the absence of a main flow in the longitudinal direction, these conditions lead to a 
solution corresponding to acoustic streaming which for small R, was analysed by 
Rayleigh (1883). Hence, the flow under consideration is a superposition of simple shear 
flow on Rayleigh-type acoustic streaming. Let x’, y’, z’ denote the coordinates, and 
u‘, v’, w’ the corresponding velocity components. Under the above conditions, none of 
the flow parameters depend on the x’-variable. 

The properties of acoustic streaming are more typically seen when the characteristic 
length of the problem, i.e. the distance between the walls, is much smaller than the 
sonic wavelength, A, but much larger than the thickness of the Stokes layer, 
1 = (2v/w)”2: 

A b h b l .  (2.3) 
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FIGURE 1. The flow domain with coordinates. Here h is the distance between the walls, U is the 
velocity of the upper wall, W is the velocity of the imposed standing sound wave. 

In view of the second condition, we can distinguish in the flow region a narrow acoustic 
boundary layer adjacent to the walls in which the velocity decreases from its value in 
the sound wave to zero at the solid surface. Compressibility is ignored as the velocity 
in this layer is much smaller than that of sound, and the characteristic dimension, h, 
is much smaller than the wavelength: 

The equation of the acoustic boundary layer in the (y’, z’)-plane may be solved by 
successive approximations with respect to the small quantity w,, the amplitude of the 

w,/c + 1, whlc 4 1. (2.4) 

velocity fluctuations 
w,/wh 4 1. 

In the second approximation the right-hand side of the acoustic boundary-layer 
equation contains steady terms which give rise to the time-independent term in the 
velocity (Schlichting 1955) 

(2.6) w: = -sin2nz’. 

The velocity does not vanish at large distances from the wall, i.e. outside the acoustic 
boundary layer. Equation (2.6) serves as a boundary condition on the Navier-Stokes 
equations. 

For the longitudinal motion problem the leading-order velocity contribution is time 
independent and the transport of momentum across the narrow acoustic boundary 
layer is essentially due to viscous diffusion. The resistance to momentum transfer is 
negligible in this narrow region and the velocity of the main flow essentially does not 
change across the inner acoustic layer. This does not provide any information on the 
driving velocity gradient and attention is turned to the momentum transport effects in 
the outer region responsible for momentum transfer. 

3w; 
8c 

The equations of motion, determining the flow in question are as follows: 

(2.9) 

(2.10) 
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where p‘,p’ are the fluid density and pressure. The relevant boundary conditions are 

u’ = v‘ = 0, w‘ = wl at y‘ = 0, 
u’ = U, v’ = 0, w’= wi at y‘ = h. 

The system of equations (2.7k(2.10) may be decomposed in two parts. The first one 
includes (2.8k(2.10) which do not contain the longitudinal velocity component, u’. Its 
solution describes secondary streaming which is not affected by the flow in the XI- 

direction. With the solution for velocity components v’, w’, equation (2.7) for u’ may 
be analysed separately. This study enables us to reveal the influence of acoustic 
streaming upon simple Couette flow. Without solving the whole problem, we shall deal 
with the asymptotic analysis and evaluate the effect of the secondary vortical flow upon 
the shear stress aLy, at the walls, y’ = 0 and y’ = h :  

(2.11) I 

(2.12) 

The mean value of the wall shear stress 
here an overbar denotes an average with respect to the transverse variable, z’. 

will be the main object of the investigation; 

3. Statement of the problem of secondary streaming 

terms of the stream function, $’, where 

equations (2.8t(2.10) and relevant boundary conditions may be rewritten in the form 

As outlined in $2, we consider first the acoustic streaming at the (y’,z’)-plane. In 

w/ = ay/ay/,  = -ay/az‘, (3.1) 

Let us introduce the vorticity 52’: 

and the following non-dimensional variables : 

2Y’ 32c , 8ch y=-- l  , z=2nz’, $=m$, sZ=-Q’. 
3w; 

(3.3) 

(3.4) 

The first condition in (2.3) may be rewritten in the form 

According to this condition, the derivatives with respect to y are much larger than 
those with respect to z. We may represent 52 in the form 

. c = n h 4  1. (3.5) 

Thus, (3.2) may be rewritten in the form 

(3.7) 
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FIGURE 2. Rayleigh's acoustic streaming between the walls in terms of dimensionless variables. 
The field of view corresponds to one vortical cell. 

where R, is defined in (1.1). The problem first attracted the attention of Rayleigh (1 883) 
who was concerned with creeping motions, R, 4 1. In this case the inertial terms in 
(3.7) are negligible compared with the principal viscous term. The simplest form of the 
Navier-Stokes equation 

yields Rayleigh's solution 

@ = (y3-y)sinz, v = -~(y~-y)cosz,  w = (3y2-1)sinz. (3.9) 

The flow described by this expression consists of two series of vortices lying 
symmetrically about the median plane, y = 0, and periodic in the z-direction, with 
period 2x as shown in figure 2. The normal velocity component is directed towards the 
walls at the antinode, z = 0, and away from them at the node, z = x. The contributions 
at z = 2x are identical to those at z = 0. The periodicity of the solution results in the 
conditions 

9 = O  at z =O,z=x .  (3.10) 

The centres of the vortices are situated at the points (&  1/43 ,  n/2), (&  1/43,3/2x) in 
the (y, z)-plane. 

Our concern is with the case R, 9 1. The condition (3.10) holds in this case also, since 
the substitution z = - z (or z -  x = x -z), $ = - $ does not change the equation and 
the boundary conditions in (3.7). From the obvious symmetry of the problem, the flow 
is symmetrical about the plane y = 0. Hence, 

= a@(-v, 4 a$C.(Y, z) - a$(-Y? 4 (3.11) 

From (3.10), (3.1 1) it follows that both components of the velocity vanish at the points 
( f l,O), ( f 1, x), (0, 0), (0,x). These points represent stagnation points of the flow field. 

aY 

aY aY a Z  az 

4. Analysis of acoustic streaming for R, + co 
We now seek an asymptotic solution to (3.6), (3.7) in the limit R,+ co, B + O .  For 

such values of the flow parameters, the coefficients of highest-order derivatives in (3.7) 
are very small, therefore viscosity manifests itself only in narrow regions. Thin 
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FIGURE 3. Acoustic streaming between the walls when R, is large. Shaded regions denote boundary 
layers ; unshaded regions have uniform vorticity ; the corner regions near the stagnation points are 
denoted by the letter S. 

boundary layers of thickness O(R;"') will be formed at the walls within which, 
assuming that the layers do not separate, the velocity of the flow is adjusted to that 
dictated by the flow in the core of the domain. The anticipated solution of the problem 
as R, increases behaves with R, according to the order of magnitude associated with 
classical boundary-layer theory, while the core vorticity tends to a constant value, 52, 
say (Batchelor 1956), with the streamlines in the core flow becoming closed. A picture 
of the flow with a sketch of the streamlines is given in figure 3. The unshaded regions 
correpond to the core in which the flow has uniform vorticity. The vorticity in one core 
region has the same magnitude as, but the opposite sign to, the vorticity in the other 
core region. The regions in the vicinity of the stagnation points are denoted S. 
Boundary layers are also formed along the lines of symmetry: at line y = 0 of thickness 
O(R;l/') and at lines z = 0, 7c of thickness O(ER;' /~) .  The fluid in the boundary layer 
at the wall in one core region meets boundary-layer fluid from the other core region, 
relating to the other wave or the other series of vortices. The two boundary layers 
impact, and must continue along the lines of symmetry. The velocity is continuous 
across the lines of symmetry but the vorticity is not, and the corresponding boundary 
layers represent the regions in which the discontinuity is smoothed out (Harper 1963). 

The value of 52, is determined by the intensity of the imposed standing wave, and it 
has to be fixed by proper matching of the solution in the boundary layers and the core 
region. 

4.1. Motion in the core region 
We solve for the flow in the core region of the lower left rectangle in figure 3, i.e. for 
- 1 < y < 0,O < z < n. For the other rectangles, the solution may be obtained using 
symmetry conditions (3.10), (3.11). If we refer to flow in the core by a subscript c, the 
governing equation for +, in the core is 

where 52, is positive according to the velocity distribution on the lower wall. The 
boundary condition on +, is 

+ , = O  at y=-1,O or z=O,7c. (4.2) 

The solution of (4.1) subject to (4.2) may be written down in the form of a double 
Fourier series. Fortunately, the presence of the small parameter E in (4.1) allows one 
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to obtain a simplified asymptotic solution justified in the regions close to antinode, 
z = 0, or node, z = n, lines. For line z = 0, the boundary condition is taken as follows: 

$,,=o at y = - 1 , 0  or z = 0 , 1  

$,,=0(1) as z + w .  J (4.3) 

We refer to flow in this region by a subscript ca. The solution of (4.1) subject to (4.3) 
is found to be 

For the region close to line z = x, the solution may be obtained from (4.4) by replacing 
z by x - z. In the limit c + 0, (4.4) yields 

$, = -fsz,y(l +y) ,  v, = 0, w, = -i52 2 C(1+2Y). (4.5) 
These expressions describe the core solution in the region far from node or antinode 
lines. We can see that the transverse velocity component, w,, changes sign at line 
y = -0.5 which is shown in figure 3 by a dashed line. 

The solution (4.4) gives as the normal velocity component at the edge of the core 

sin (2m + 1) xy. 452 O0 1 
v,aI,=o = v,, = c 

n2 m=O (2m+ 1)2 

For line z = x, the velocity component has the same magnitude and the opposite sign. 
In accordance with (4.6), the normal velocity distribution is symmetrical about line 
y = -0.5, and it has a minimum value at this line. 

For the transverse velocity component at the edge of the core, the solution (4.4) 
yields 

where the signs minus and plus stand for y = - 1 and y = 0, respectively. In the limit 
c + 0, we obtain 

where now the signs plus and minus stand for y = - 1 and y = 0, respectively. 
w, = +;52,, (4.8) 

4.2. The flow near the stagnation points 
According to (4.4), (4.6) the stream function 
may be represented in the form 

in the vicinity of lines z = 0 and z = n 

respectively. 
The streamlines corresponding to the edge of the core diverge from the right-angled 

corners near the stagnation points. Therefore, (4.6), (4.7), (4.9) are not valid near these 
points (in fact, the coefficient of Q,z(y+ 1) in the expansion of (4.4) for small z and 
( y +  1) diverges). Thus the vorticity might be expected to fall to zero as the stagnation 
points are approached. Hence, the solution for the stream function of the irrotational 
flow at points sufficiently near stagnation point (- 1,O) can be found from (4. l),  with 
the vorticity put equal to zero and boundary conditions (3.7), (3.10): 

$ = 2z(y+ I ) ,  v = -2€(y+ l), w = 22. (4.10) 
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This approximation holds up to the wall, since the solution also satisfies the viscous 
equation (3.7) with the slip condition at y = - 1. In order to match the rotational core 
solution (4.9) and solution (4.10), corresponding to the irrotational flow, we have to 
follow the whole procedure for matching the solutions for the core flow, the corner flow 
and the flow in the boundary layers. A discussion of some aspects of this procedure is 
given in Harper (1963) where the boundary layers behind a bluff body are considered. 
It is found that the vorticity is dominated by an irrotational term near the stagnation 
point. 

In (4.10) the rate of strain near the stagnation point equals -2. This is determined 
by the flow in the core region. For the stagnation point (0, 0), the rate of strain must 
have the same magnitude but the opposite sign because of the symmetry of the core 
flow about line y = -0.5. Hence, the frictionless flow near the point is given by the 
stream function 

l++ = -2zy,  v = 2€y, w = -22. (4.1 1) 

In accordance with the analysis above, the stream function in the vicinity of the 
antinode and the node can be represented in the limiting form commonly adopted for 
studying the velocity near the point of attachment in natural convection flows. In this 
limit as z + 0 or z + 7[: the stream function is 

l++ = Z f Y ) ,  l++ = (7[:-ZZ)AY) (4.12) 

respectively. The function A y )  near y = - 1 and y = 0 is determined by (4. lo), (4.1 l), 
respectively, and outside the regions adjacent to the stagnation points by (4.9). It is a 
symmetrical function about y = -0.5. In view of the second condition in (3.11),fy) 
is an odd function. We note that the integral 

ru 
(4.13) 

J -1 

which is an even function, has a minimum value equal to zero at y = - 1 and a 
maximum value at y = 0 as y varies in segment [ - 1,0]. 

In the limit e+O, (4.9) gives the principal contribution to the integral (4.13) as 
compared with that of (4.10), (4.1 1). On evaluating integral (4.13) by substituting (4.9), 
we obtain 

(4.14) 

The second derivatives of S ( y )  at y = - 1 and y = 0 may be evaluated by means of 
(4.10), (4.11): 

S”( - 1) = 2, S”(0) = -2. (4.15) 

We shall use these results in the next subsection. 

4.3. Motion in the viscous boundary layers 
The procedure of matching the solutions for the core flows, the corner flows and the 
flow in the boundary layers must fix the value of 52,. We can employ an approximate 
method of solution for the boundary layer that was developed by Harper (1963), 
Moore (1963) and Lyne (1970). The method is based upon a linearization of the 
boundary-layer equation. In order to match solutions corresponding to the different 
boundary layers, the method assumes that the vorticity and velocity profiles are 
convected around each corner on the streamlines of the motion. This assumption 
enables us to fix the value of 0,. However, for our problem 52, may be found by a 
method developed in Batchelor (1 956) without any linearization procedure. 
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In accordance with the method, we use the von Mises form of the boundary-layer 
equation with dt’  representing a displacement along the streamline $’ = const and q’ 
being the dimensional velocity in this direction. Then we take the line integral around 
a closed contour coinciding with a streamline. In cases in which the velocity outside the 
boundary layer is uniform the operation results in the condition (Batchelor 1956) 

qr2dtf  = const (4.16) 

throughout the boundary layer. In our case, the velocity of the main stream is uniform 
when we consider the boundary layers at lines y = - 1 and y = 0 and it is non-uniform 
at lines z = 0 and z = x. However, the contribution to the integral that is made along 
that part of the contour is O(h/h)  and therefore negligible. Hence, we obtain that the 
condition (4.16) holds in the present case. 

On evaluating integral (4.16) for the streamline just outside the boundary layer, we 
find the constant in the right-hand side of (4.16) to be equal to xs2:/2. On evaluating 
the integral for the streamline going along the wall, where q = w, = 2 sin z ,  and the axis 
of symmetry y = 0, where q = W, = - QJ2, we obtain a, = 2 2/2. The result is correct 
to leading order, given h / h  4 1 .  

We now study details of the viscous boundary layer at the wall and the axis of 
symmetry. Because the velocity varies very slightly across the layer, we may replace the 
nonlinear equation by a tractable linear equation (Moore 1963; Harper 1963; Lyne 
1970). 

The boundary-layer equation for the layer adjacent to the axis of symmetry z = 0 is 

f 

(4.17) 

We assume that the flow field in the boundary layer is a small perturbation of the 
velocity in the core and write 

n = Qc+Rp, v = Ka+vp ,  (4.18) 

where a subscript p denotes a perturbation quantity. Substituting (4.18) into (4.17) and 
neglecting quadratic terms in the perturbation quantities, we have, as the boundary- 
layer equation 

(4.19) 

We now transform (4.19) into the diffusion equation by the use of the following 
transformation : 

(4.20) 

Here yo is a fixed point, to be chosen so that 5 is positive everywhere along the layer 
under consideration. It may be taken quite close to zero but not zero since point (0,O) 
is a stagnation point. Equation (4.19) becomes 

(4.21) 
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(4.22) I with the conditions O,+O as 7++00, 

52,=-52, at y = O ,  

52, = Q P ( y ,  0) at 5 = 0. 

Here QP(y ,  0) is some initial condition, so that 52,(0, 0) = -52,. The solution of (4.21) 
subject to the above conditions is given in Carslaw & Jaeger (1959): 

Since 52, = 2 2/2, the perturbation cannot be small near 7 = 0, but we hope this will not 
alter the result qualitatively. Integrating once with respect to 7 one can obtain the 
solution for the perturbation of the normal velocity component. 

The linearized boundary-layer equation for the layer along the line y = 0 can be 
written as 

1 with the conditions d,+O as y+--co, 

52,=-52, at y=O,  

52, = 52,( y ,  z,,) at z = zo. 

(4.24) 

(4.25) 

Here O,( y, zo) is some initial condition, so that Q,(O, zo) = -52,. Using the relevant 
transformation, which is similar to (4.20), we can transform equation (4.24) into the 
diffusion equation. This equation, under conditions (4.25), has a solution which is 
similar to (4.23). 

The linearized boundary-layer equation for the layer adjacent to the wall, where the 
slip condition (3.7) is applied, is (Lyne 1970) 

(4.26) 

(4.27) I with the conditions w,+O as y+co, 

wp = 2sinz-@, at y = - 1, 

wp = w,(y,z) at z = zl. 

Here wp( y, zl) is some initial condition, so that wp( - 1, zl) = 2 sinz, -&?,. We can 
transform (4.26) into the diffusion equation by means of the transformation used in 
Lyne (1970). However, in the limit e+O, when Wca = W, (see (4.8)), equation (4.26) 
may be simplified to 

(4.28) 

The solution of (4.28) subject to conditions (4.27) is given in Carslaw & Jaeger (1959): 

4 e-P2 dp - !$2, erfc Y + l  
2[a(z - - z ~ ) ] ~ / ’  
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Here we use the notation a = 2/R,Q,. The solution contains the transient terms and 
the Stokes periodic term which determines the behaviour of the solution as z increases. 

5. Analysis of shear flow 
Let us consider equation (2.7) for the velocity component u’, in which the velocity 

components u’, w’ are assumed to be determined by the acoustic streaming analysed in 
94. Going over to the dimensionless variables (3.4) and taking advantage of the 
condition ( 3 3 ,  one obtains 

u = o  at y=-1 ,  u =  1 at y =  1,) 

where u = u‘/U is the dimensionless velocity component. For large values of R,, the 
coefficient of the highest-order derivative in (5.1) is a small parameter of the problem, 
therefore, viscosity has an effect only in boundary layers of thickness O(R;’”). The 
solution for u in the inviscid core represents the straight lines u = const; in the regions 
adjacent to the walls the expressions for u are u = 0 and u = 1. At y = 0 there is a 
discontinuity in the core solution. Viscosity manifests itself in several regions. A 
boundary layer is formed along plane y = 0 in which the discontinuity is smoothed out. 
The effect of viscosity is pronounced in the narrow regions near the stagnation points 
on the (y,z)-plane, i.e. in the vicinity of singular lines (x, f 1,0), (x, f 1,n), (x,O, 0), 
(x, 0, n) extended in the x-direction. It is worth recalling that the flows along these lines 
are essentially frictionless with respect to the transverse direction. The boundary layers 
are formed along planes y = k0.5, corresponding to the dashed lines in figure 3, 
extended in the x-direction, since velocity components u, w vanish on these planes. It 
is clear that the contribution to the mean value of the wall shear stress in question can 
come from viscous forces only in the neighbourhood of those singular lines indicated 
above, which are adjacent to the walls, i.e. at the lines (x, f 1,0), (x, f 1, n). Outside 
these lines, the wall shear stress tends to zero as R, tends to infinity. The vanishing of 
the wall shear stress is related to the slip condition realized in acoustic streaming. Fluid 
particles move along the walls without losing any momentum. Recall that the 
resistance to momentum transfer is negligible in the inner acoustic layer. Hence, at 
large R, the wall shear stress of the longitudinal motion approximately equals zero 
everywhere except in the vicinity of the singular lines. Figure 4(a) is a sketch of the 
velocity distribution outside such lines, for example, when z = in. The regions of a 
steep change of the velocity in the figure correspond to planes y = k0.5. 

In order to estimate the mean value of the shear stress, c, let us treat equation (5.1) 
in the vicinity of the antinode, z = 0, and the node, z = n. In accordance with (3.1), 
(4.12), the velocity component w vanishes at these planes, and equations (5.1) become 

u = o  at y = - l ,  u = ~  at y = l , J  

where signs plus and minus denote the node and the antinode, respectively. 
At z = n the solution of the problem is given by 

1 rv M 
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FIGURE 4. A sketch of the longitudinal velocity distribution at R, @ 1 ; (a), (b), (c) are in the 
neighbourhood of planes z = 4 2 ,  z = K and z = 0, respectively. 

Since S(y) is an even function, the integral e(R,) can be represented in the form 

Since S( y) has a maximum value at y = 0 given by (4.14), the integrand has a maximum 
value at this point. With (4.14), (4.15) the integral F,(R,) at R, > 1 may be estimated 
by the Laplace method (Olver 1974). The principal term of the asymptotic solution is 

Let us introduce the velocity gradient g: 
<(R,) = (n/Rs)1/2eRsSm~~, R, 9 1 .  ( 5  * 5 )  

g(y, 4 = w a y y .  (5.6) 

g( 1 ,  n) = (R,/n)'/z e-RsS-. (5.7) 

According to (5.3), (5.5) the velocity gradient near the walls is 

One can see that this term vanishes as R, tends to infinity. At the same time the velocity 
gradient at y = 0 tends to infinity. Figure 4(b) is a sketch of the velocity distribution 
at the node, z = R .  

At z = 0 the solution of the problem is given by 

Since S( y) has a minimum value equal to zero at y = - 1,  the integrand has a maximum 
value at this point. With (4.15) the integral F,(R,) at R, % 1 may be estimated by the 
Laplace method. The principal term of the asymptotic solution is 

F,(R,) = (n/R,)'", R, % 1 .  (5.9) 
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The velocity gradient near the walls is 

g(f 1,O) = (R,/x)~”. (5.10) 

One can see that this term tends to infinity as R, tends to infinity. At the same time the 
velocity gradient at y = 0 tends to zero. Figure 4(c) is a sketch of the velocity 
distribution at the antinode, z = 0. 

We now study the behaviour of the velocity gradient at points just outside singular 
line z = 0. Substituting (4.8) and 9, = 22/2 into (5.1), we arrive at the diffusion 
equation for u. The velocity gradient g also satisfies the diffusion equation 

(5.11) 

where k = R;’/2/2. We solve (5.1 1) subject to the initial condition g(y, 0) = g,(y), 
where g,(y) is the solution following from (5.8). Noting that function g,(y) may be 
defined to be equal to zero outside segment [ - 1,1], we obtain the solution 

Let us define an average velocity gradient at the walls: 

(5.12) 

(5.13) 

We can see that k + 0 as R, + co, and therefore kz is close to zero as z varies in the 
whole segment [ O , X ] .  Substituting (5.12) into (5.13) and replacing the integrand by a 6- 
function, we obtain approximate asymptotic relation gY=-’ = go( - 1). Hence, at large 
R, the mean wall shear stress is determined by the flow in the vicinity of the antinode. 

We now define the dimensionless mean wall shear stress: 

(5.14) 

Then the ratio of A, corresponding to (5.10) and that of the usual simple shear flow, 
denoted Awe, is given by 

(5.15) 

Thus, for large R, this ratio and, therefore, the increase of the wall shear stress due to 
acoustic streaming are proportional to the amplitude and to the square root of the 
frequency of acoustic oscillations. 

As it has been pointed out above, the transport of momentum across the boundary 
layers adjacent to planes y = 0 and y = k 0.5 does not contribute directly to the mean 
value of the wall shear stress. Using (4.5), (5.1) one can arrive at the diffusion equation 
describing the flows in the boundary layers and write down the corresponding 
asymptotic solutions. 

6. Conclusion 
An external plane standing wave is imposed in the transverse direction with respect 

to a simple Couette flow. The statement of the problem assumes that none of the flow 
parameters depend on the longitudinal variable. The effect of the sonic wave results in 
the appearance of secondary streaming periodic in the transverse direction. The steady- 
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state two-dimensional Navier-Stokes equation describing that acoustic streaming is 
analysed for large values of the streaming Reynolds number, R,. The asymptotic 
solution consists of inviscid core regions (the majority of the flow field), which have 
closed streamlines and uniform vorticity ; boundary-layer regions, not all of which are 
connected to the walls; and the corner regions near the stagnation points, in which the 
flows are frictionless in character. The approximate matching of the solutions in these 
regions fixes the value of the uniform vorticity. 

The results obtained concerning the streaming flow field are then used to investigate 
the influence of the secondary streaming upon the shear flow. The steady-state 
equation for the longitudinal velocity component, including the inertial and viscous 
terms, is treated by the method of asymptotic expansions. Special attention is paid to 
the wall shear stress distribution. It is revealed that the distribution has periodic 
structure with respect to the transverse direction. The wall shear stress increases 
significantly in the neighbourhood of the singular lines relating to the antinodes of the 
imposed sound wave and extended in the longitudinal direction. Outside these lines, the 
wall shear stress vanishes. The lines correspond to the stagnation points of the 
transverse acoustic streaming; therefore, the flow near the lines is frictionless with 
respect to the transverse direction. An asymptotic relation for R, 9 1 expressing the 
averaged wall shear stress in the transverse direction is derived. It is shown that the 
increase of the mean wall shear stress due to acoustic streaming is proportional to the 
amplitude and to the square root of the frequency of the acoustic oscillations. 

It seems that the periodic structure of the wall shear stress that has been detected 
may be of use in interpreting the bursting phenomenon in wall turbulent shear flow. 

This work was supported by the Israel Science Foundation on Grant No. 592-93-1. 
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